Fuzzy Cognitive Map Reasoning Mechanism for Handling Uncertainty and Missing Data: Application in Medical Diagnosis
نویسنده
چکیده
In this study, the fuzzy causal map inference mechanisms are analyzed for decision making tasks and a comparative analysis is performed to handle with the uncertainty in the problem of pulmonary risk prediction. Fuzzy Cognitive Mapping (FCM) is a causal graphical representation including nodes, determining the most relevant factors of a complex system, and links between these nodes determining the relationships between those factors. It represents knowledge in a symbolic manner and relates states, processes, policies, events, values, and inputs in an analogous manner. In the proposed work, a modified inference mechanism for FCM approach, which handles uncertainty and missing data, is presented and compared with the common fuzzy causal graph reasoning process for a medical diagnosis problem. Through this study, we overcome the problem of missing data and/or incomplete knowledge, especially for the cases where there is no any information about a concept-state or the knowledge of some concepts is insufficient. By this way, the rescaled inference process is proved more reliable, yielding more exact and natural inference results than traditional FCMs. A number of different scenarios for medical diagnosis concentrated on the pulmonary infections are elaborated to demonstrate the functioning of the rescaled FCM inference mechanism.
منابع مشابه
A Dynamic Temporal Neuro Fuzzy Inference System for Mining Medical Databases
The analysis and representation of temporal data are becoming increasingly important in many areas of research and application. The existing Fuzzy Cognitive Maps (FCMs) are efficient modeling method for knowledge representation and fuzzy reasoning in time series analysis. In the past, it was used to represent a complex causal system as a collection of concepts and causal relationships among con...
متن کاملA Fuzzy Inference Map approach to cope with uncertainty in modeling medical knowledge and making decisions
In this work, the Fuzzy Inference Map approach (also known as Fuzzy Cognitive Map) is investigated to handle with the problem of risk analysis and assessment of pulmonary infections during the patient admission into the hospital. A Fuzzy Inference Mapping is an artificial cognitive structure within which the relations between the elements of a mental landscape can be used to assess the impact o...
متن کاملZ-Cognitive Map: An Integrated Cognitive Maps and Z-Numbers Approach under Cognitive Information
Usually, in real-world engineering problems, there are different types of uncertainties about the studied variables, which can be due to the specific variables under investigation or interaction between them. Fuzzy cognitive maps, which addresses the cause-effect relation between variables, is one of the most common models for better understanding of the problems, especially when the quantitati...
متن کاملLearning Fuzzy Grey Cognitive Maps using Nonlinear Hebbian-based approach
Recently, Fuzzy Grey Cognitive Maps (FGCM) has been proposed as a FCM extension. It is based on Grey System Theory, that it has become a very effective theory for solving problems within environments with high uncertainty, under discrete small and incomplete data sets. The proposed approach of learning FGCMs applies the Nonlinear Hebbian based algorithm determine the success of radiation therap...
متن کاملA rule-based classification methodology to handle uncertainty in habitat mapping employing evidential reasoning and fuzzy logic
Habitat mapping is a core element in numerous tasks related to sustainability management, conservation planning and biodiversity monitoring. Land cover classifications, extracted in a timely and area-extensive manner through remote sensing data, can be employed to derive habitat maps, through the use of domain expert knowledge and ancillary information. However, complete information to fully di...
متن کامل